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Abstract

Exact laws for evaluating cascade rates, tracing back to the Kolmogorov “4/5” law, have been extended to many
systems of interest including magnetohydrodynamics (MHD), and compressible flows of the magnetofluid and
ordinary fluid types. It is understood that implementations may be limited by the quantity of available data and by
the lack of turbulence symmetry. Assessment of the accuracy and feasibility of such third-order (or Yaglom)
relations is most effectively accomplished by examining the von Kármán–Howarth equation in increment form, a
framework from which the third-order laws are derived as asymptotic approximations. Using this approach, we
examine the context of third-order laws for incompressible MHD in some detail. The simplest versions rely on the
assumption of isotropy and the presence of a well-defined inertial range, while related procedures generalize the
same idea to arbitrary rotational symmetries. Conditions for obtaining correct and accurate values of the dissipation
rate from these laws based on several sampling and fitting strategies are investigated using results from
simulations. The questions we address are of particular relevance to sampling of solar wind turbulence by one or
more spacecraft.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Space plasmas (1544); Plasma physics
(2089); Magnetohydrodynamics (1964); Magnetohydrodynamical simulations (1966)

1. Introduction

Direct measures of cascade rates in turbulent systems often
employ theoretical formulations related to Kolmogorov’s
“4/5” law (Kolmogorov 1941b; Frisch 1995) and its variants,
in which the inertial range cascade rate is related to a signed
third-order structure function. This so-called exact law is
derived from the fluid equations without appeal to dimensional
analysis, assumptions about scaling behavior, or any ansatz
concerning timescales; however, this law does require time
stationarity, spatial homogeneity, the existence of an inertial
range, and a finite dissipation rate. The original formulation for
isotropic incompressible hydrodynamics has been extended to
magnetohydrodynamics (MHD; Politano & Pouquet 1998a,
1998b) and related models. The MHD version is frequently
applied to in situ observations of plasma turbulence in the solar
wind (Sorriso-Valvo et al. 2007; MacBride et al. 2008;
Bandyopadhyay et al. 2020) to obtain cascade rates that inform
theories of heating and acceleration of the solar wind (Osman
et al. 2011), providing ground truth for related approximations
in space physics (Vasquez et al. 2007). Frequently a major
issue in these applications is the use of formulations derived
assuming isotropy in turbulence that is actually anisotropic
(Verdini et al. 2015), this being the typical case for solar wind
and magnetosheath turbulence. Usually this potential incon-
sistency is disregarded in favor of extensive averaging,
whenever possible. Another more practical limitation is the
challenging requirement of a sufficient volume of data (Podesta

et al. 2009), a kinematic and statistical issue further
complicated by potential sensitivity to the tails of the
probability distribution of the fluctuations (Dudok de
Wit 2004). Taking these challenges into account, we note that
the ability to extract cascade rates from observational data is of
increasing importance due to the centrality of fundamental
questions relating to heating and dissipation in space and
astrophysical plasmas (e.g., Kiyani et al. 2015). Therefore, in
the present study we revisit several related issues that are
pertinent to the evaluation of third-order laws using single-
point or multi-point measurements. We reexamine the issue of
averaging by focusing on conditions for obtaining accurate
results in both isotropic and anisotropic turbulence. The
strategies we examine are implemented using data from
three-dimensional (3D) MHD turbulence simulations. A
motivation for this approach is that for such cases we have
an unambiguous determination of the underlying turbulence
symmetry as well as a straightforward method to quantify the
absolute dissipation rate.
The remainder of the paper is structured as follows. In

Section 2, we review relevant theoretical and observational
studies that set the stage for the questions we address. Section 3
describes in detail the simulations used for the present study.
Section 4 contains the results for the one-dimensional (1D)
form of the third-order law using measurements for the
isotropic and anisotropic cases. Section 5 delves into the
direction-averaged 1D form of the third-order law in the inertial
range and shows the effect of all terms in the von Kármán–
Howarth equation. Section 6 provides an example of using the
1D form third-order law in a single spacecraft sample, and
discusses the relative accuracy of this strategy to estimate the
energy dissipation rate in observational measurements.
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Section 7 provides a summary of the results, and examines the
relationship between the strategies used in this study and their
potential applications to multipoint observations via a con-
stellation of spacecraft.

2. Background

2.1. Theory

We start from the 3D incompressible MHD equations (e.g.,
Biskamp 2003)
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where v and B represent the local velocity and magnetic field
(the latter in Alfvén speed units with pr B B4 and
uniform mass density ρ), P is the total (thermal plus magnetic)
pressure, ν is the kinematic viscosity, and μ is the resistivity.
Note that B= B0+ b where B0 is the global mean field and b is
the fluctuating field. As is well known, one may work with the
Elsässer variables (Elsasser 1950), z±(r)= v(r)± b(r), instead
of v and b. For situations where ν= μ, the incompressible
MHD equations are then rewritten as
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By taking the difference between the equation at z±(r) and
that at z±(r+ ℓ), and assuming homogeneity and incompres-
sibility, the pressure term and the term containing B0 vanish.
Let us define

d = + -  z r ℓ z r ℓ z r, 3( ) ( ) ( ) ( )

as the increment of the Elsässer variables. Taking now the dot
product of δz± with the equation for ∂(δz±)/∂t and performing
an ensemble average of the result yields the MHD von
Kármán–Howarth equation (Politano & Pouquet 1998a,
1998b):

d d d n d¶
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Recall that because of homogeneity taking either an ensemble
average (McComb 1990) or a spatial average (denoted as 〈•〉),
means that the averaged increments 〈δz±(r, ℓ)〉 are only
dependent on the lag ℓ, and similarly for other moments of the
increments. Here, n = á ñ  z r 2[ ( )] are the mean dissipation
rates associated with the Elsässer energies 〈z± · z±〉/2 (not the
increments). Since these dissipation rates involve real-space
gradients (i.e., ∇ not ∇ℓ) and are independent of lag, they are
constant over all length scales. The total energy dissipation rate
of the system, also lag independent, is

n w=
+

= á + ñ
+ -

  
J

2
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2 2 ( )

where the second form is in terms of the mean-square vorticity
〈ω2〉= 〈(∇× v)2〉 and mean-square electric current density
〈J2〉= 〈(∇× b)2〉.

Equation (4) is the fundamental equation of energy
conservation on which all related results presented below will
be based. The terms of Equation (4) express four effects: time
dependence, nonlinear transfer, dissipation (of the mean-square
increments), and the exact dissipation rate of Elsässer energies,
respectively, from left to right. For convenience in referring to
the first three of these terms, which are lag dependent, we
designate dá ñ =¶

¶
 z T

t
2( ) , dá ñ = z G2( ) , and

d d= á ñ Y ℓ z z . 62( ) ∣ ∣ ( )

The quantities Y±, the Yaglom fluxes, are the only third-order
structure functions present. The MHD von Kármán–Howarth
equation, Equation (4), can then be rewritten as

n+  -  = -   YT G2 4 . 7ℓ ℓ
2· ( )

We will also make use of the sum of these equations which
represents scale-by-scale conservation of the total (flow plus
magnetic) energy rather than that of the Elsässer energies.
Writing T= T++ T−, and similarly for Y and G, we have

n+  -  = - YT G2 8 . 8ℓ ℓ
2

diss· ( )

Below we will refer to the ∇ℓ · Y
± terms as the Yaglom term,

recalling that it represents nonlinear transfer of energy across
scales. In this scale-by-scale energy balance equation, T
represents the time rate of change of energy at scales smaller
than ℓ, while the term involving G is the dissipation at scales
larger than ℓ.
Much of the remainder of this paper will examine various

approximations and idealizations in which important informa-
tion, especially the dissipation rates ò± and òdiss, can be
extracted easily, and to varying extents, accurately from
Equations (7) and (8). We emphasize the following properties
of this central equation: (i) It is exact, subject to the
assumptions of spatial homogeneity and incompressibility;
(ii) It depends on the 3D structure functions of the various
terms in vector lag (ℓ) space; (iii) It does not require very large
Reynolds numbers; and (iv) It is much more general than the
various forms of third-order laws (Politano & Pouquet 1998a,
1998b) that are commonly implemented to estimate òdiss.
The governing Equation (7) is rather versatile as a starting

point for determining the bookkeeping of energy at all scales,
including its supply from large scales, its transfer across scales
and its dissipation into heat. When appropriate the transfer
across scales will be considered to be a cascade as will be
discussed more precisely below. Equation (7) holds at every
point in 3D lag space, so if the terms involving T±, Y±, and G±

are known at any point, then òdiss can be determined. However,
this requires accurate determination of first and second
derivatives in multiple independent lag directions, in general.
Such information is formally available in high-resolution 3D
simulations, but since such derivatives will be evaluated
approximately, averaging results over different ℓʼs—usually
at constant ℓ= |ℓ|—is useful to achieve accuracy. To set the
stage for subsequent results we begin with an illustrative
example of this type, based on one of our simulations
(discussed fully in the following section). We note that related
recent studies have also implemented a direct evaluation of
terms in the MHD von Kármán–Howarth equations, including
direction averaging (Hellinger et al. 2018; Adhikari et al. 2021;
Yang et al. 2022).
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Shown in Figure 1 are the (direction-averaged) terms of the
von Kármán–Howarth equation, Equation (7), plotted versus
the magnitude of the lag for a selected incompressible MHD
simulation. Upon averaging over directions, the terms in
Figure 1 only depend on lag length ℓ. It is readily seen that the
(appropriate combinations of the) T±, Y±, and G± terms quite
precisely sum to the value of òdiss. This represents the exact
conservation of energy; specifically, for any chosen length
scale, the sum of the rates of change of energy due to all
processes is zero.

It is also apparent that the different terms T±, Y±, and G± in
Equation (7) make their principle contribution in different
ranges of scales. In this particular simulation, such separation
of scales is not perfect; this is discussed further below. This
points to the most commonly encountered simplification of
scale-dependent energy balance, namely, the possibility of
an inertial range. In the original hydrodynamic context,
Kolmogorov (1941a) postulated that an inertial range is
obtained asymptotically at an infinite Reynolds number.

The onset of an inertial range is expected when the large
energy-containing eddies become well separated from the
scales at which dissipation occurs. This has been shown in
some detail in high Reynolds number hydrodynamics experi-
ments (e.g., Antonia & Burattini 2006). For a true inertial
range, the Yaglom term −∇ℓ · Y

±/4 is the only significant
contribution to Equation (7) over this range of lag ℓ (i.e., this
term is? the other terms) and we say that the Yaglom term
determines the cascade rate. Ideally the contribution of the
Yaglom term is flat over a span of lags. Figure 1 exhibits only a
hint of the emergence of such a clear scale separation and
therefore the phrase inertial range is only loosely applicable for
that simulation. Note, however, that the presence or absence of
an inertial range does not influence the accuracy of
Equation (7) in any way.

2.1.1. Third-order (aka Yaglom) Laws

In a well-established (i.e., large bandwidth) inertial range,
both the time variation term (−T±/4) and the scale-dependent
dissipation term (n G 2ℓ

2 ) are small. If these terms become
vanishingly small over an intermediate scale range then—
without assuming isotropy—one obtains the simplified
equation:

d d = á ñ = -  z zY 4 . 9ℓ ℓ
2· · ∣ ∣ ( )

Such two-term specializations of the von Kármán–Howarth
equation are called third-order or Yaglom laws. Herein we refer
to Equation (9) as the divergence form, or 3D form, of the
MHD third-order law. A point of emphasis is that to obtain
these forms requires that the Reynolds number is large enough
that an effectively dissipation-free (inertial) range exists, and
that the energy content of this range is steady. These
assumptions are in addition to the requirements of homogeneity
and incompressibility that are inherited from the developments
leading to Equation (7). Isotropy is not required.
Isotropy. An important historical development was the

imposition of isotropy on Equation (9), which leads to its
further simplification. This was originally done for hydro-
dynamics (Kolmogorov 1941b) and later for MHD (Politano &
Pouquet 1998a, 1998b). Assuming then that the MHD
turbulence is isotropic, Equation (9) may be directly integrated
to provide a 1D form, or the isotropic form, for the third-order
law (Politano & Pouquet 1998b; Osman et al. 2011):

d d= á ñ = -  ℓ z zY ℓ
4

3
, 10ℓ

2( ˆ · )∣ ∣ ( )

sometimes called a 4/3 law. There are also equivalent forms
that use just the longitudinal increments—sometimes called the
4/5 laws (Kolmogorov 1941b; Frisch 1995; Politano &
Pouquet 1998a).
Direction averaging. Although isotropy can be established

a priori only rarely, the isotropic or 1D form of the third-order
law is nonetheless still often used in observational or
experimental situations (Sorriso-Valvo et al. 2007; MacBride
et al. 2008). The utility of this approach may be understood
better when the technique is supplemented by direction
averaging, carried out in an appropriate way. This very
important and intuitively appealing idea has been developed
in the hydrodynamics literature (Nie & Tanveer 1999; Taylor
et al. 2003). The analogous result for incompressible MHD
follows by direct extension of the hydrodynamic case. Below
we present an abbreviated version of this straightforward
derivation for MHD.
We proceed by direction averaging the fundamental energy

balance relation, Equation (7). Carrying out a full integration
over all directions,5 and using an overbar to designate
averaging over the full 4π solid angle, e.g.,  =Yℓ ·

òp -4
S ℓ

1( ) · ò òpW = 
p p -Y d 4 ℓ

1
0 0

2
( ) · q f qY sin d d , we

find, without loss of generality, that

n+  -  = -   YT G2 4 . 11ℓ ℓ
2· ( )

It is readily shown that the angular parts of the ∇ℓ operators do
not contribute when the averaging is taken into account. Some
details are provided in Appendix. The direction-averaged von

Figure 1. Terms of the von Kármán–Howarth equation, Equation (7),
evaluated using the anisotropic ( =B z20 ˆ) simulation III at t = 3.2. Here,

dá ñ =¶
¶

 z T
t

2( ) , 〈δzm|δz±|2〉 = Y±, and dá ñ = z G2( ) . The green, red, and
blue curves correspond to the three left-hand side (LHS) terms in Equation (8),
averaged over many directions of vector lag ℓ. Lag is expressed in units of the
simulation box length (2π). The orange horizontal dashed line indicates the
exact dissipation rate òdiss = ν〈ω2 + J2〉. The black curve is the sum of the three
(LHS) terms: the large-scale energy supply, the nonlinear transfer rate to
smaller scales, and the dissipation at scales larger than ℓ. As expected, they add
up to the total dissipation rate.

5 Using spherical polar coordinates.

3

The Astrophysical Journal, 937:76 (13pp), 2022 October 1 Wang et al.



Kármán–Howarth equation becomes
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where each term on the LHS depends on the scalar lag ℓ= |ℓ|.
In Equation (12), for convenience of the presentation later, we
have introduced the shorthand notation º *ℓℓ ℓ ℓ

1 1 d

d
2

2 [ ]( ) for the
radial contribution to the divergence operator, and the radial
part of the Laplacian operator, with dummy arguments ∗, and
both defined in the lag space. We emphasize this explicitly to
distinguish the form of Equation (7), which involves 3D vector
operations, while Equation (12) involves only the reduced
dimensional 1D operations.

This direction-averaged form of the von Kármán–Howarth
equation, Equation (12), remains quite general requiring only
spatial homogeneity and incompressibility. If the system is also
time stationary, or if suitable time averaging is performed
(Taylor et al. 2003), the first term, T , may be safely
neglected. Following the usual arguments, when the Reynolds
number is sufficiently large (ν sufficiently small), the
dissipative term involving G is also negligible over an
intermediate range, which becomes the inertial range. In that
case, the remaining ordinary differential equation is

= = -   Y
ℓ ℓ

ℓ Y
1 d

d
4 , 13ℓ ℓ ℓ

1
2

2[ ] ( )( )

which immediately integrates into the direction-averaged third-
order law (see Equation (A6) in the Appendix)

= - Y ℓ
4

3
. 14ℓ ( )

Although this is structurally identical to the 1D form third-
order law associated with an inertial range in isotropic cases,
Equation (10), we emphasize that there are several important
distinctions between Equations (10) and (14). The former holds
at any (inertial range) vector lag ℓ but only for isotropic
turbulence. The latter holds for any rotational symmetry (or
lack thereof) but requires averaging (the full 4π) solid angle.

The third-order (Yaglom) laws for hydrodynamics and MHD
should be applied in situations in which one may reasonably
assume that the conditions leading to these relations are
actually attained. However, in general the most frequently
quoted conditions—time stationarity, homogeneity in space,
and high Reynolds numbers—may not always hold and a
pristine inertial range may not appear. In such cases, the range
over which a third-order law might be applied may be polluted
by other terms in Equation (7).

The exact statement of energy conservation in Equation (4)
or (7) provides a complete specification of the energy balance
in homogeneous turbulence when evaluated over arbitrary
regions of the (vector) lag space. When the full energy balance
cannot be computed, it is common practice to resort (some-
times without demonstrating justification) to more compact
third-order laws—such as Equations (9), (10), and (14)—all of
which require that the time-dependent terms T± and dissipative
terms G± are negligible for a useful region of lag space.

Below we provide several examples of different approaches
to approximately measure the inertial range transfer rate

(sometimes loosely called the cascade rate) using MHD
simulation data:
Method I. The unidirectional 1D form, Equation (10), is

evaluated for a fixed lag direction, over a range of lag
magnitudes. This is suitable for isotropic systems. The choice
of direction is clearly not unique but should not matter for
a truly isotropic system. There are several variations:
Equation (10) can be evaluated over a range of lags with a
linear fit (through the origin) giving ò±. Alternatively, the
equation can first be divided by ℓ and the result plotted,
allowing estimation of ò± from a suitable flat range.
Method II. The 3D (or divergence) form, Equation (9), can

be used to compute ò± when 3D lag-space derivatives can be
reliably determined in several directions. This method is based
on a direct evaluation of (derivatives of) the Y± terms in the
von Kármán–Howarth Equation (7) and is fully general in
terms of turbulence symmetries when inertial range conditions
are obtained. No direction averaging is required although
averaging may reduce statistical inaccuracies. In this paper, the
only occasion where the 3D lag-space derivatives are
calculated is when obtaining the curves shown in Figure 1.
Method III. The direction-averaged 1D form, Equation (14),

is exact when integrated over the full spherical domain of lags,
provided that inertial range conditions are established. How-
ever, a full integration over direction may not be feasible with
available measurements. In practice, a discretized approx-
imation to the continuum average is likely to be needed. This
may be obtained, for example, by calculating Yℓ for each of the
(limited number of) available directions of ℓ and then forming
the appropriately weighted average of these, see, for example,
Equation (A7).
All three of the above methods, being based on third-order

laws, require the existence of an inertial range, at least
approximately. Otherwise, and more generally, when the T±

and G± terms are significant, it is appropriate to use more
complete forms of the von Kármán–Howarth equation, such as
Equation (7) or (12).

2.2. Observational Approaches and Limitations

Typical solar wind studies of turbulence are carried out with
single spacecraft measurements and in a high-speed flow for
which time correlations can be interpreted as spatial correla-
tions with reasonable accuracy (Jokipii 1971). In these
circumstances, observational analyses typically compute a
cascade rate by employing 1D forms of the third-order law or
its generalizations. In space plasma measurements, it is difficult
to obtain the time variation and the dissipative terms in the von
Kármán–Howarth equation Equation (4) or (7), and therefore
only the ∇ℓ · Y

± terms (or really their integrals) can be
calculated using in situ data from single spacecraft.
Most frequently Method I, Equation (10), is employed for

cascade rate estimation in the solar wind (MacBride et al. 2005;
Sorriso-Valvo et al. 2007; MacBride et al. 2008). Implicit in
this approach is the assumption of isotropy, although the
accuracy of this approximation has rarely been demonstrated.
There have been attempts to adapt the 1D forms in order to
refine the method (Stawarz et al. 2009; Coburn et al. 2015) by
making various assumptions about the structure and symmetry
of the Yaglom flux.
The 1D forms, essentially Equation (10), have also been

applied in the Earth’s magnetosheath (Bandyopadhyay et al.
2020) and in Parker Solar Probe (PSP) data near perihelia
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(Bandyopadhyay et al. 2020) where turbulence is much more
intense than at 1 au. It is noteworthy that there is considerable
recognition that averaging is required, although this typically
takes the form of a requirement for large data volumes and
large data sets (Dudok de Wit 2004; Podesta et al. 2009) rather
than a requirement for averaging over lag directions.

In single spacecraft measurements (with the Taylor hypoth-
esis) it is feasible to improve accuracy by averaging several
measurements (MacBride et al. 2008). However, this averaging
method is still not considered as the 3D form Equation (9), and
generally the weighting of different directions has not been
considered. In particular, keeping in mind the results
summarized in the previous section, finite sampling strategies
generally do not guarantee a uniform distribution of lag
directions on a sphere. In this regard, a very important
development is the recognition that the Yaglom flux varies
systematically over the direction relative to the mean magnetic
field (Verdini et al. 2015). However the assembly of
measurements into a proper averaging over the unit sphere—
essentially the result obtained by Nie & Tanveer (1999) in
hydrodynamics extended to the MHD third-order law (Politano
& Pouquet 1998a) as in Equation (14)—has apparently not
been fully appreciated in previous MHD and space physics
studies. There has been at least one study (Osman et al. 2011)
employing multi-spacecraft Cluster data that accumulated the
normal flux over a sphere in lag space, approximately carrying
out the operations implied by Method III, Equation (14). Such
data sets are infrequently available in the solar wind.

As a consequence, it is crucial to know how accurately one
might estimate the cascade or dissipation rate when computed
from Method I, the 1D form Equation (10), in various
situations. This may be challenging in the solar wind, where
the existence of a strong global magnetic field implies
significant anisotropy. Proper direction averaging may not
always be possible, unless very large ensembles are considered,
as in, for example, recent ensemble average computations of
correlation function that employed years of data and proper

normalization of individual samples (Roy et al. 2021).
However the intent of cascade rate estimation is often to
understand more local conditions, so the emphasis may be on
very much more local averaging. Such cases are severely
constrained by the availability of single spacecraft data and the
number of directions relative to the mean magnetic field that
can be sampled. For an examination of the distribution of flow-
magnetic field directions at 1 au, see the analysis of this
question based on the MMS Turbulence Campaign in the solar
wind by Chasapis et al. (2020). The remainder of this paper is
largely devoted to exploring the accuracy of energy transfer
(cascade) rate measurements using von Kármán–Howarth
equations and third-order laws in various forms.

3. Simulations

In order to study the energy cascade rate in MHD turbulence
using third-order structure functions, we analyze data from
several incompressible 3D MHD turbulence simulations. Key
parameters of the simulations employed are shown in Table 1.
For all simulations in the table, the domain is a three-
dimensional periodic box with sides of length 2π, and the
MHD equations are solved using a Galerkin spectral method
(Orszag & Patterson 1972; Oughton & Matthaeus 2020). Each
simulation is initialized with the condition that the fluctuation
magnetic energy and fluid flow energy are equal, such that
Em= Ef= 0.5. Also, the viscous and resistive dissipation
coefficients, ν and μ, are set equal. These parameters act,
respectively, as the reciprocal Reynolds number and the
magnetic Reynolds number. The normalized cross helicity,
σc= 〈v · b〉/(Ef+ Em), is known to be a significant factor in the
evolution of turbulent MHD (Pouquet et al. 1986). Run III has
a substantial value of σc, and this case will be qualitatively
contrasted with the lower cross helicity case in run II. A full
scan of parameters such as σc will not be attempted in this
study. Runs II and III are undriven and anisotropic, with
distinct values of B0. Run I is isotropic and driven; this case is

Figure 2. Time evolution of 〈J2〉 and 〈ω2〉 for Runs I (left), II (middle), and III (right). The vertical orange line indicates the time for performing the analysis.

Table 1
Simulation Parameters

Run Type Symmetry Resolution (3D) B0 δb/B0 k Range ν = μ σc òdiss n= ℓdiss
3

diss
1 4( )

I Driven Isotropic 512 0 L 3-5 2.0 × 10−3 −0.05 0.795 0.010
II Decaying Anisotropic 1024 1 1 1-3 4.0 × 10−4 0.09 0.179 0.0043
III Decaying Anisotropic 1024 2 0.5 1-5 4.0 × 10−4 0.7 0.0948 0.0051

Note. The global magnetic field B0 is in the ẑ direction. The rms magnetic fluctuation is d = á ñbb 2 , and δb/B0 measures the initial relative strength of the
fluctuations. Column “k Range” indicates the wavenumber forcing band (Run I) or the initial conditions band (Runs II and III). Viscosity ν equals resistivity μ for each
simulation. The normalized cross helicity σc, energy dissipation rate òdiss, and dissipation scale ℓdiss are computed at the respective times of analysis indicated in
Figure 2.
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included to minimize time-dependent effects while examining
residual transient dependence on direction, an effect that will be
discussed further below.

The analyses presented here are carried out at the simulation
times indicated in Figure 2, which shows the time evolution of
the mean-square current density and mean-square vorticity for
each run. We can compute the exact value of the dissipation
rate, òdiss, using Equation (5). Table 1 lists the values of òdiss for
each simulation at the time our analysis is performed.

In the following sections, we carry out several types of
analyses centered around the strategy of employing the third-
order structure function to estimate the dissipation rate in the
simulation. The exact dissipation rate, òdiss from Equation (5),
is used to study the accuracy of these various strategies.

4. Results: 1D form Third-order Law

In this section, we apply Equation (10), a simplified and
widely used 1D form of the third-order law referred to as
Method I, to simulation data obtained from both isotropic
(Section 4.1) and anisotropic cases (Section 4.2). We examine
the inertial ranges and dissipation rates estimated from this 1D
form. We will consider estimates based on individual directions
as well as partial averages over directions, but we do not here
attempt a full integration over a solid angle, which is a
requirement for Method III.

4.1. Isotropic Case

We consider the driven B0= 0 isotropic simulation I.
Figure 3 displays the curves for ++ -Y Y ℓℓ ℓ( ) as a function
of ℓ, individually computed for each of 36 selected directions
uniformly distributed on a sphere. The 3D trilinear interpola-
tion method (Bai & Wang 2010) is used to calculate magnetic
and velocity fields not located on grid points. Each curve
represents a certain lag direction, and the value along the y-axis
is the average of - +Y ℓ3 4ℓ ( ) and - -Y ℓ3 4ℓ ( ). The peak value
of - ++ -Y Y ℓ3 8ℓ ℓ( ) ( ) is used to estimate the dissipation rate.

We observe that for all the curves the peak values are smaller
than the actual dissipation rate, òdiss, which is explained in
Section 5.2. It is also evident in Figure 3 that the inertial ranges
associated with the different lag directions are broadly
consistent in extent, with some variation in the peak values.
This indicates that at the instant of time of this analysis, even
this nominally isotropic simulation admits some degree of
variation over directions. It is reasonable to suppose that
directional averaging might improve the estimates of dissipa-
tion rate in this case; we will take up this discussion in a later
section.

4.2. Anisotropic Case

The anisotropic simulations we consider have a mean
magnetic field, zB0 ˆ, with B0= 1 or 2 and differing cross
helicities (see Table 1). In this section, we only consider the
anisotropic simulation III. To examine how the lag direction
impacts the Yaglom term in anisotropic MHD, we evaluate the
dissipation rate in simulation III using Method I, i.e., the 1D
form of the third-order law, Equation (10). Separate estimates
are made using lags in each of 36 directions, uniformly spaced
in colatitude and azimuthal angles ( qD = p

6
and fD = p

3
). The

left panel of Figure 4 demonstrates that the peak values
associated with these different lag directions occur at different
lags. The levels of the maxima also vary, in some cases
exceeding the true dissipation rate. Similarly, the inertial
ranges associated with the different lag directions also vary in
bandwidth and position.
In order to further study the effect of partial averaging in the

presence of a global magnetic field, we group the lag directions
by their corresponding polar angle θ. Recall that the global
magnetic field is in the +ẑ direction. For each polar angle, we
average the Y ℓℓ terms over six azimuthal directions (Figure 4,
right panel). We observe that the peak of each curve shifts to
smaller lags as θ increases. Moreover, the peak value associated
with the quasi-parallel case (ℓ∥B0 and θ= 0) provides a
significantly lower estimate of òdiss than do the larger θ cases,
which have peak values comparable to the actual dissipation
rate. This reflects the well-known fact that energy transfer
proceeds more rapidly perpendicular to an applied magnetic
field (Shebalin et al. 1983).
An analysis similar to that of Figure 4 is shown in Figure 5

for simulation II, which has low σc and B0= 1. Here, once
again, larger θ values, more strongly perpendicular lag
directions, are associated with the inertial range behavior
found at smaller lags. It is interesting to examine the degree of
anisotropy of the energy transfer by looking at the disparity of
the cascade rate estimates at varying angles in the two cases,
simulation II with weaker B0 and smaller σc, and simulation III
with stronger B0 and larger σc. The ratio of the strongest
estimate to the weakest over angles is actually slightly greater
in simulation II (ratio ∼1.4) than in simulation III (ratio ∼1.3),
even though simulation III has the stronger mean magnetic
field. Superficially this result appears to be anomalous;
however, the significant contrast in cross helicity (σc)
values is a likely explanation, as this is another factor that
can influence nonlinear timescales, cascade strength, and
anisotropy.

Figure 3. Estimating the dissipation rate using Method I, the 1D form third-
order law (Equation (10)), applied to data from the isotropic simulation I.
Recall d d= á ñ ℓ z zYℓ

2( ˆ · )∣ ∣ . Different curves represent the results of 36
different lag directions uniformly distributed on a sphere. Each curve represents
the average of the +Y ℓℓ and -Y ℓℓ terms for a fixed lag direction. The dark blue
dashed horizontal line (at 0.795) indicates the actual energy dissipation rate. A
standard procedure is to assume that the peak values provide estimates of the
dissipation rate and the corresponding ℓ values locate in the middle of the
inertial range.
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4.3. Comparison between the Isotropic and Anisotropic Cases
Using the 1D form

The above Method I results for estimating òdiss indicate clear
differences between the isotropic and anisotropic situations. In
each system, we chose 36 different lag directions, distributed
uniformly on a sphere, and employed the 1D form of the third-
order law (Equation (10)) to calculate (ò++ ò−)/2 for each
direction. For the driven (statistically steady) isotropic simula-
tion we found that the inertial range and also the corresponding
energy cascade rate determined this way are roughly
independent of the lag directions (Figure 3), as expected for
isotropy. For the two anisotropic cases, different lag directions
vary much more in terms of the cascade rate estimates as well
as location and bandwidths of the suggested inertial range(s).
The conclusion is that it is difficult to accurately determine the
energy cascade rate of an anisotropic system using the 1D form
third-order law (Equation (10)), especially with one or a small
number of computed lag directions. For an isotropic system,
the situation is somewhat better, although some modest
variation in the estimated cascade rate is seen in varying lag
directions.

5. Results: Full Directional Averaging

Given the variability we have seen in the above numerical
experiments in both isotropic and anisotropic cases, we expect
to obtain improved results starting from either the divergence
(3D) form Equation (9) (Method II), valid within a well-defined
inertial range, or from the von Kármán–Howarth equation,
Equation (4) or (7), which is broadly applicable even when an
inertial range is not present. Another strategy, which we now
explore, is to compute the dissipation rates ò± using Method III,
the fully direction-averaged 1D form of the third-order law,
Equation (14).6

As emphasized above, based on the generalization of the
result in Nie & Tanveer (1999) to the MHD von Kármán–
Howarth equation, one finds that direction averaging can
reduce the problem to the 1D integration over the full 4π solid
angle, see, for example, Equation (12). We can then consider
just the radial component if the chosen lag directions
completely cover the sphere (details of equations and
discretization method can be found in the Appendix). In
particular, when an inertial range is present, the direction-
averaged MHD Yaglom law Equation (14) emerges as an exact
result.
Here, we proceed numerically, employing a discretization

method like Equation (A7) to calculate the direction-averaged
1D form third-order law Equation (14) in the inertial range, and
a similar method for the direction-averaged von Kármán–
Howarth equation Equation (12) (details in the Appendix).
Again, 3D trilinear interpolation is used for values of magnetic
field and velocity not located on grid points. In order to get a
uniform distribution, at any fixed lag length, we vary the
direction of the lag. Let θ be the polar angle, and f be the
azimuthal angle, in such case, we keep Δθ and Δf to be fixed,
which are π/12 and π/6, respectively, for simulations with
resolution 1024 (π/8 and π/4 for simulations with resolu-
tion 512).

5.1. Method III: Direction-averaged 1D Form Third-order Law

In Figures 6 and 7, we show the directional average of 1D
form third-order law, with its assumption of a well-defined

Figure 4. A collection of estimates of dissipation rate using Method I, the 1D form third-order law (Equation (10)), applied to data from the high σc, =B z20 ˆ
anisotropic simulation III. Left: each curve represents the average of the +Y ℓℓ and -Y ℓℓ terms for a fixed lag direction. The dashed horizontal line indicates the actual
energy dissipation rate. Peak values estimate the dissipation rate and (horizontal) location of a peak roughly locates in the middle of the inertial range. Right: same data
as the left panel, normalized by òdiss, and averaged over azimuthal angle f. Each curve is for a fixed polar angle θ, and averaged over six equally spaced azimuthal
angles with fD = p

3
.

Figure 5. Evaluating the dissipation rate using the 1D form third-order law
(Equation (10), Method I) for the low σc, B0 = 1 anisotropic simulation II.
Curves correspond to lag directions with the indicated polar angle θ and
averaged over six equally spaced azimuthal angles, f. Each curve represents
the average of the corresponding Y ℓℓ terms, normalized by the true
dissipation rate.

6 We already showed the results in Figure 1 obtained from the von Kármán–
Howarth equation (Equation (4) or (7)), which was also direction averaged as
in Equation (11). This averaging over directions in Figure 1 was not required
but increased the accuracy of the computation.
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inertial range, using data from simulations I and III. Recall that
simulation III has a high cross helicity, leading to a large
difference between “+” and “−” terms in Figure 7. The dark
blue curve is the average of the minus and plus terms. We see
that the dissipation rate computed from the direction-averaged
1D form is slightly smaller than the exact dissipation rate in
both isotropic and anisotropic cases. This indicates a relatively
minor role of the time variation term and the dissipative term in
the von Kármán–Howarth equation for both cases.

5.2. Direction-averaged von Kármán–Howarth Equation

We now demonstrate the estimation of energy transfer rates
using all relevant terms in the direction-averaged von Kármán–
Howarth equation Equation (12). Note that in a driven system,
the von Kármán–Howarth equation Equation (4) should be
extended to include a large-scale forcing term 〈δz± ·Fℓ〉 on the
right-hand side. The associated direction-averaged form can be

written as

n d+ - = - + á ñ      z FT Y G2 4 . 15ℓ ℓ ℓ ℓ
1 2 · ( )( ) ( )

This analysis is first carried out for simulation I, a driven
isotropic system. Figure 8 displays these direction-averaged
contributions to the von Kármán–Howarth equation, omitting
the forcing term. We see that at small scales the sum of the
(direction-averaged) time variation term (- T ), cascade term
(-  Yℓ ℓ

1( ) ), and dissipative term ( n  G2 ℓ
2( ) ) add up to the

actual dissipation rate; evidently, the driving force term does
not play a role at these scales. On the other hand, at large
scales, the forcing term (not shown) is dominant, and the sum
of the other three terms drops as ℓ increases. One may notice
that when the Yaglom term - ++ - Y Y 8ℓ ℓ ℓ

1 ( )( ) is at its peak
of∼ 86% of òdiss, the dissipative term n ++ - G G 4ℓ

2 ( )( )

is∼ 12% of òdiss, which is small although not quite negligible.
Comparing this to the results shown in Figure 6, obtained using
Method III and Equation (14), we see that the direction-
averaged 1D form of the Yaglom law, which assumes inertial
range conditions, actually produces a smaller estimate for the
cascade rate, with a peak of ∼83% of òdiss.
The equivalent results for the decaying anisotropic simula-

tion III with global field =B z20 ˆ are shown in Figure 9.
Energy balance is again evident, in this case at all scales.
Furthermore, the peak value of the- ++ - Y Y 8ℓ ℓ ℓ

1 ( )( ) curve
is∼ 87% of òdiss, which is usefully close to the true value.

5.3. Comparison between Anisotropic Cases

We recall that two anisotropic simulations (Runs II and III)
are included, in part, to explore the parameter variations that
may influence the results. These simulations have different
magnetic field strengths and different levels of cross helicity,
both of which are known to influence the nature of the
anisotropic cascade (Pouquet et al. 1986; Politano &
Pouquet 1998a; Oughton et al. 2015).
In this section, we compare the results from these two

anisotropic cases, simulations II and III. First, as a comparison
with Figure 9 for simulation III, we show in Figure 10 the terms
of the direction-averaged von Kármán–Howarth equation

Figure 6. Evaluating dissipation rates for isotropic simulation I using Method
III, the direction-averaged 1D form third-order law, Equation (14). Here, the
direction-averaged d d= á ñ ℓ z zYℓ

2( ˆ · )∣ ∣ term is designated as Yℓ . The dark
blue curve is the average of the two Yℓ terms, and the orange horizontal line
indicates the exact dissipation rate.

Figure 7. Method III, direction-averaged 1D form third-order law
(Equation (14)), applied to data from anisotropic simulation III, which has
high σc = 0.7 and B0 = 2. The same color code as Figure 6 is used.

Figure 8. Terms of the direction-averaged von Kármán–Howarth equation
Equation (12) in the driven isotropic simulation I at t = 8. The orange
horizontal line indicates the actual dissipation rate. The black curve,
representing the total transfer rate, is the sum of the three lines representing
the Y, G, and T terms. The forcing term, which contributes to the transfer rate
on large scales, as in Equation (15), is not plotted.
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(Equation (12)) for simulation II, which add up to the exact
dissipation rate. However, for simulation II, due to the non-
negligible effect of the time variation and dissipative terms, we
observe that the peak value of the- ++ - Y Y 8ℓ ℓ ℓ

1 ( )( ) curve is
much smaller than the exact dissipation rate (approximately
77%). Thus, one can also expect that using the direction-
averaged 1D form third-order law (Method III), which only
considers the Yaglom term Yℓ , will yield a less accurate
estimate for the cascade rate.

As discussed in Section 2, large Reynolds numbers are
required in order to have an inertial range that is well separated
from the dissipation range. Unfortunately, due to limited
computing capabilities, this is not the case for our simulations.
Furthermore, it has been assumed that the time variation term is
negligible in Equation (4), along with the dissipation term.
Again, this is not the case for the anisotropic simulations we
report on herein (see the discussion of Figures 9 and 10). Since
our simulation II is not in a regime where the cascade terms
(∇ℓ · Y

±) dominate over the time variation and dissipation

terms, the transfer rates estimated using a third-order law are
significantly less than the actual dissipation rate, even in lag
directions perpendicular to B0, which usually give values closer
to the exact energy transfer rate (see Figure 5). Of the runs, we
consider that simulation III is perhaps the least limited in
this respect. In particular, as Figure 9 indicates, the peak
- ++ - Y Y 8ℓ ℓ ℓ

1 ( )( ) contribution is ∼13% smaller than òdiss.
However, the situation is complicated since in some parts of the
inertial range there is cancellation of the (negative at small ℓ)
time variation term - ++ -T T 8( ) and the dissipative
term n ++ - G G 4ℓ

2 ( )( ) .

6. Cascade Rate and Single Spacecraft Sampling

Single spacecraft observations in the solar wind provide lags
in only one direction, thus we can apply only the 1D form
third-order law, usually that written as Equation (10); and
described as Method I, see Section 2.1. The same definition

d d= á ñ ℓ z zYℓ
2( ˆ · )∣ ∣ is employed, but now =z

m á ñv B n mi i0 , where μ0 is the magnetic permeability of
free space and mi, 〈ni〉 are, respectively, the mass and (interval
averaged) number density of the solar wind protons. Here, we
analyze measurements made by PSP from 2018 November
3–8; the time cadence of the data is 1 s. The purpose is not to
provide an exhaustive treatment of the solar wind cascade rates.
Instead, we present an example to inform and support our
discussion.
The dissipation rate òdiss can be estimated by performing a

linear fit in the inertial range, where the corresponding slope
gives the value of òdiss. We choose the inertial range as the
range separated from the correlation length and the estimated
scale at which kinetic effects become important. The latter is
typically a few ion inertial scales, as indicated in Figure 11.
Generally, we also examine the energy spectra (not shown) to
ensure that a reasonable power-law distribution is found in the
selected range of scales. A linear least mean-square method is
employed over the selected inertial range for determining the
best-fitting slope to the computed values of Yℓ . Note that
Figure 11 is plotted in log–log form, while the best fits are

Figure 9. Terms in the direction-averaged von Kármán–Howarth equations,
same as Figure 8, except using data from anisotropic simulation III (B0 = 2,
high σc). Energy balance is obtained at all scales, as indicated by the
comparison of the actual dissipation rate calculated from ν〈ω2 + J2〉 with the
black line, which is the sum of the three lines representing the Y, G, and T
terms.

Figure 10. Terms in the direction-averaged von Kármán–Howarth equations,
same as Figure 9, except using data from anisotropic simulation II (B0 = 1, low
σc). Energy balance is obtained at all scales.

Figure 11. The 1D form third-order law (Method I) is used for PSP
observations to estimate the energy dissipation rate (data from 2018 November
3–8, with averaged helio-distance 37.9 R☉; lags are in units of the ion inertial
length, di). The indicated value of ò = 3.25 × 105 J/kg-s is obtained using a
least mean squares linear fit to + =+ - Y Y ℓ3 8ℓ ℓ( ) . The inertial range in
which we perform the fit to the 1D form is indicated by the two vertical dashed
lines.
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computed in linear–linear space. One should not be confused
with the slope of the line in log–log form and the estimated
dissipation rate ò. Plotted this way (log–log) the slope of the
line indicates the power law in lag, which is expected to be
linear, while the level of the line determines the estimated
dissipation rate.

Third-order statistics are notoriously noisy in the solar wind
and a single example will not be fully representative. The
sample result shown can be meaningfully compared with other
recent third-order analyses, including those that employ PSP
data (Bandyopadhyay et al. 2020; Andrés et al. 2021, 2022).
However, detailed comparisons are beyond the scope of the
current study. Recent studies also indicate the presence of
anisotropy in computed correlation scales (Cuesta et al. 2022)
as well as anisotropy in the energy spectrum at kinetic scales
(Huang et al. 2022; Zhang et al. 2022) in the PSP data sets,
which may suggest anisotropy of nonlinear energy transfer.
More evidence has been shown in Andrés et al. (2022), which
examines variations of third-order law with decomposition into
parallel and perpendicular components using PSP data.

As discussed earlier, in anisotropic configurations, the
dissipation rate we obtain from the 1D form third-order law
Equation (10) depends on the lag direction, as is evident in
Figure 4 for simulation III and Figure 5 for simulation II. In
addition, the inertial range is also not uniquely determined in
anisotropic cases and estimates of the optimal range of lags to
associate with a putative inertial range vary with the lag
direction as seen in the same figures. Therefore, the estimates
of dissipation rate vary when analyzing different directions and
assuming different inertial ranges. Nonetheless, the 1D form
third-order law may provide reasonable approximations of the
actual dissipation rate if the directional variability in values of
the estimated dissipation rate is acceptable. For example,
cascade rates estimated from different peaks in Figure 4 vary
by about 50% of the exact dissipation rate.

The solar wind has a global magnetic field, and in the inner
heliosphere, a relatively high cross helicity. These features are
similar to those of simulation III. Examining the results of our
analysis for this run (Figure 4, right panel), the error in the
estimates of the cascade rate obtained from the 1D form third-
order law can usually be assessed from the variation in the peak
value and the variation in the location of the peak in the
lag axis.

7. Discussion and Conclusions

We have examined the properties of several formulations for
analyzing energy transfer in homogeneous MHD turbulence.
The von Kármán–Howarth equations in increment form,
Equation (4), symbolically written as Equation (7), provide
the most complete treatment. These are exact equations and
account for dissipation, time dependence, nonlinear transfer,
and anisotropy. Quantitative evaluation of the several terms in
the von Kármán–Howarth equations affords direct insight into
the conditions required to identify a range of scales that can
reasonably be viewed as an inertial range. Ideally, in such a
range, Kolmogorov’s assumptions of steady dissipation-free
transfer across scales can be realized, and the only term that
makes a substantial contribution is the one involving the third-
order structure functions, Y±. In that case, various forms of the
Kolmogorov–Yaglom (Frisch 1995) law become relevant, and
specifically in MHD, the third-order law derived first by
Politano & Pouquet (1998b).

When less information is available, and in particular when it
is impractical to determine three-dimensional derivatives in lag
space, researchers have traditionally adopted one of several
approaches to simplify the estimation of the transfer rate, which
in steady conditions is the cascade (or dissipation) rate. We
have examined several issues that affect these familiar
approximations.
In our study, we examined both the von Kármán–Howarth

equation and a simpler form of the third-order law for
incompressible MHD simulations of turbulence systems. In
MHD under different global magnetic field conditions, one can
compute the correct value for the cascade rate if each term of
the von Kármán–Howarth equation, Equation (4) or (7), can be
computed exactly. With a numerical discretization, only
approximate values can be obtained. Nevertheless, averaging
the von Kármán–Howarth equation in a sufficient number of
independent directions (e.g., spanning a spherical surface), and
keeping only the radial (ℓ̂ ) components of the so-obtained Y±,
can provide accurate results. This strategy is based on a
rigorous reduction of the problem to a one-dimensional
direction-averaged form, a direct extension to MHD of the
hydrodynamic result (Nie & Tanveer 1999). The direction-
averaging approach may be particularly useful when adapted
for use with multi-spacecraft data sets (for which there are
typically only a small number of lag directions available) to
estimate local cascade rates for space plasma turbulence. The
accuracy of this method for different simulations is reported in
Section 5 and displayed in Figures 8–10.

For further simplification, we require the existence of an
inertial range of substantial length (i.e., a very high Reynolds
number) to justify the use of what we have called the third-
order laws (Section 2.1.1). Since the condition of infinite
Reynolds number cannot be achieved, we are not able to
observe a perfect inertial range, thereby leading to discrepan-
cies between the actual cascade rate and the one determined
from the third-order term. An advantage of these simplified
forms is that they ignore dissipative and time variation effects,
which are difficult to measure experimentally. The 3D form of
the third-order law requires that at least some measurements are
available in different directions and provides a reasonable
estimate of 3D derivatives in lag space in simulations (Verdini
et al. 2015). In the presence of time stationarity, the 3D form
third-order law can provide an accurate estimate of the energy
transfer rate in the inertial range.
The further assumption of isotropy is often used for in situ

measurements of solar wind turbulence (e.g., Stawarz et al.
2009; Osman et al. 2011) and magnetic reconnection in Earth’s
magnetosheath (e.g., Bandyopadhyay et al. 2020). In the
presence of isotropy, the 3D form third-order law can be
simplified to a 1D form, which employs only one lag direction.
For isotropic MHD simulations, the 1D form third-order law
provides a reasonable approximation, with some statistical
variation with changing lag direction.
Issues regarding the accuracy of energy transfer rate

estimation become still more significant when anisotropy is
induced by a mean magnetic field, a circumstance expected to
be of significance in space and astrophysical plasmas. We
report on two anisotropic simulations (Figures 4 and 5) in
Section 4.3 and (Figures 9 and 10) in Section 5.3. From these
results, it is apparent that error in estimation from the 1D form
third-order law follows from a combination of effects due to the
magnitude of the global magnetic field (anisotropy), the
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contribution of the dissipative term, and a lack of time
stationarity. These errors can add up to be ∼50% of the exact
dissipation rate in our simulations. We conclude that the
(unaveraged) 1D form provides a correct order of magnitude
result for the moderate levels of anisotropy found in the
parameters we adopted.

Several aspects of the effects of anisotropy are summarized
in Figure 12, which includes an assessment of the direction-
averaged von Kármán–Howarth equation Equation (12). We
intend to highlight variations of energy transfer for different
polar angles θ, and therefore we do not show variations with
varying azimuthal angle f. In Figure 12, we plot (green curves)
the sum of the time variation (− (T++ T−)/8), the 1D Yaglom
term (- ++ - Y Y 8ℓ ℓ ℓ

1 ( )( ) ), and the 1D dissipative term
(n ++ - G G 4ℓ

2 ( )( ) ), each averaged over 12 azimuthal angles
for fixed polar angles ranging over the interval 0� θ� 90°.
Recall the definitions of the 1D operators  1( ) and  2( ) are
given below Equation (12). The average over f is indicated by
〈...〉f in the legend. Note that the procedure is not equivalent to
full 4π solid angle averaging, which is indicated by an overbar
as in Equation (12). Clearly averaging over f is only a partial
averaging and, in general, falls short of the effect of fully
directional averaging.

The average of the contributions from each θ can be
weighted by qsin and summed, to provide an approximation to
a proper average over the sphere, which is the full 4π solid
angle averaging indicated by the overbar as in Equation (12).
This sum is also shown in Figure 12 (as the black line). We
observe that this summation closely adds up to the exact
dissipation rate, also shown (orange line). This demonstrates
the approximate convergence that is expected based on the
MHD generalization of the Nie & Tanveer (1999) exact result
for hydrodynamics, as we discussed in previous sections.

To delve somewhat further into this analysis of anisotropy,
we note that since each partially averaged (green) curve in
Figure 12 is obtained at one only polar angle θ relative to the
mean field, we see a large variance in the sum of the three
(LHS) terms in the von Kármán–Howarth equation. At small
scales, the top curve, having the largest estimated total transfer

rate, corresponds to θ(ℓ, B0) close to 90° and the bottom curve,
with the lowest estimated transfer rate, corresponds to θ(ℓ, B0)
near 0°, almost parallel to the mean field. In fact, the estimated
transfer rate at small scales increases monotonically as we
increase the polar angle (from 0°–90°). On the contrary, at large
scales, the sum of the three terms is larger for smaller θ. As a
consequence, the peaks of these curves shift from large scales
to small scales as we increase θ. In addition, we may notice that
these curves are intertwined in the middle range of lags, which
is approximately the inertial range (see Figure 9). There is
actually a rather narrow range of lags near ℓ= 0.3 in which the
estimates derived from different polar angles are close to one
another, varying by only about±10%. Overall, the observed
variability at different values of polar angle θ emphasizes the
necessity of a uniform angular coverage of the lag directions to
compute an accurate energy transfer rate in anisotropic cases. It
is also consistent with the variability associated with the Y ℓℓ
term (i.e., Method I) that was demonstrated for the anisotropic
cases (Figures 4 and 5), and to a lesser extent even for the
isotropic case (Figure 3).
This paper has been developed with two main intentions.

First we intended to summarize pertinent analytical results
relating to the measurement of energy transfer rates beginning
with the von Kármán–Howarth equations and leading to
several reductions that are essentially third-order (Yaglom)
laws, or for MHD, Politano–Pouquet third-order laws. The
reduction to Yaglom laws becomes applicable when an inertial
range is present, so that all terms but the Yaglom flux become
negligible in contributing to the total energy balance over a
range of lags in the inertial range. The second purpose has been
to provide examples and caveats concerning the use of these
methods by application to several moderate-resolution MHD
turbulence simulations.
The results are generally seen to be encouraging. Even with

significant variation in estimates expected due to variation of
lag direction in anisotropic cases, and due to pollution of the
putative inertial range by time-dependent and dissipative
effects, estimates can be broadly accurate within tolerances of
∼50%. Simulations can generally do better than this, but for
single spacecraft observations this may be an acceptable
estimate. It is clear that estimates will improve when three-
dimensional derivatives in lag space are available, and when a
large number of baseline directions are available so one might
approach optimal direction averaging. Some progress has been
realized along these lines by exploiting these features in the
four spacecraft Cluster mission (Osman et al. 2011). Significant
advances in evaluating inertial range transfer rates will become
available in the Helioswarm mission, comprising nine space-
craft and is currently under development (Klein et al. 2019;
Matthaeus et al. 2019; Spence 2019) and a larger 24 point
configuration envisioned in the MagneToRE approach (Maruca
et al. 2021).
Finally, we mention some limitations of the present study.

We have not attempted any examination of the accuracy of
third-order laws in differing interplanetary conditions and
therefore have shown only a single case of solar wind cascade
rate analysis. A complete study of solar wind situations would
inevitably require examining variations of a number of
interplanetary parameters including fluctuation and mean field
strength, wind speed, cross helicity, turbulence age, etc. Such
an effort is highly worthwhile, and the present study provides
some guidelines regarding how such a major study might be

Figure 12. Two types of angular averaging of the von Kármán–Howarth
equation Equation (8) applied to data from the B0 = 2, high σc simulation III.
Terms with an overbar indicate an average over a full 4π solid angle (all lag
directions distributed uniformly on a sphere); see Equation (12). Each green
curve is calculated for a different fixed polar angle θ averaged over 12
azimuthal angles f, with the averaging denoted by 〈−〉f. The black curve is the
averaged value of all the green curves after weighting by qsin .
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undertaken, but for brevity and focus, we defer attempts at a
comprehensive comparison with varying solar wind conditions
to future research.

The present study is also limited to incompressible and
simple MHD cases. Including compressibility, Hall effects, and
additional physical influences on energy transfer introduces
considerable additional complexity to the estimation of the
inertial range transfer rate, and requires much more extensive
discussion. Some relevant observational results include some of
these more general physical descriptions. For example, recent
studies employing PSP, MAVEN, Cluster, Magnetosphere
Multiscale, and THEMIS data (Banerjee et al. 2016; Hadid
et al. 2017, 2018; Andrés et al. 2019, 2021) found moderate
increases in compressible energy transfer rate with respect to
the incompressible transfer rate. These results point the way to
future studies that would generalize the simpler case that we
have examined here.

This research was supported in part by the NASA Parker
Solar Probe Mission under a GI grant 80NSSC21K1765 and the
ISOIS team (Princeton SUB0000165), IMAP project (Princeton
SUB0000317), MMS mission under a Theory and Modeling
grant 80NSSC19K0565, NASA HSR grants 80NSSC18K1648
and 80NSSC19K0284, and the US National Science Foundation
NSFDOE program under grant PHY2108834.

Appendix
Reduction of 3D to 1D Forms by Directional Averaging

Starting from Equation (4), let us integrate it over a spherical
surface (i.e., over a solid angle), using spherical polar
coordinates with ℓ the radius. See Nie & Tanveer (1999) and
Taylor et al. (2003) for the closely related hydrodynamic case.
As in Equation (7), we adopt abbreviations: dá ñ =¶

¶
 z T

t
2( ) ,

〈δzm|δz±|2〉= Y±, dá ñ = z G2( ) .
The Y± term of Equation (7) becomes
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By periodicity, the integrals of the θ and f components vanish
and therefore
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Similarly, writing the Laplacian of G± term in spherical polar
coordinates also, and then integrating it over a spherical

surface,

ò ò ò

ò ò

n
n

q q
q

q

q f
q f q

n
q f q

 W =

´
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

=
¶
¶

¶
¶

p p

p p



 





G
ℓ

ℓ
ℓ

G

ℓ

G

G

ℓ ℓ
ℓ

G

ℓ

2 d
2

1

sin
sin

1

sin
sin d d

2
sin d d , A3

S
l
2

0 0

2

2

2

2

2

2

0 0

2

2
2 ( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

where the ∂θ and ∂f dependent terms also vanish after
integration; in a numerical (discretized) evaluation this
vanishing relies on a proper distribution of lag directions.
Using these results we can write the integral of Equation (7)

over a solid angle as
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where ò ò q f q p=
p p  4 sin d d 16

0 0

2
provides the last term.

Abbreviating the average over a full 4π solid angle by an
overbar, this equation leads immediately to Equation (12).
When analyzing simulation data, these integrals are

evaluated using discrete approximations. To illustrate this we
consider the simpler well-defined inertial range case, the 3D
form of the third-order law, Equation (9), integrated over a
solid angle. Using Equation (A2) in Equation (9), multiplying
by ℓ

2, and integrating over both dΩ and ℓ yields
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p p p p
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If the average over full 4π solid angle is again denoted by an
overbar, this result states that
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This is written as Equation (14) in the main text. With a simple
discretization of θ and f, this becomes
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Similar discretization approaches are applied to the more
general case, the direction-averaged von Kármán–Howarth
equation, Equation (12) or (A4).
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